Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces

نویسندگان

  • Myriano H. Oliveira, Jr.
  • Joao Marcelo J. Lopes
  • Timo Schumann
  • Lauren A. Galves
  • Manfred Ramsteiner
  • Katja Berlin
  • Achim Trampert
  • Henning Riechert
چکیده

Scaling graphene down to nanoribbons is a promising route for the implementation of this material into devices. Quantum confinement of charge carriers in such nanostructures, combined with the electric field-induced break of symmetry in AB-stacked bilayer graphene, leads to a band gap wider than that obtained solely by this symmetry breaking. Consequently, the possibility of fabricating AB-stacked bilayer graphene nanoribbons with high precision is very attractive for the purposes of applied and basic science. Here we show a method, which includes a straightforward air annealing, for the preparation of quasi-free-standing AB-bilayer nanoribbons with different widths on SiC(0001). Furthermore, the experiments reveal that the degree of disorder at the edges increases with the width, indicating that the narrower nanoribbons are more ordered in their edge termination. In general, the reported approach is a viable route towards the large-scale fabrication of bilayer graphene nanostructures with tailored dimensions and properties for specific applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The physics of epitaxial graphene on SiC(0001).

Various physical properties of epitaxial graphene grown on SiC(0001) are studied. First, the electronic transport in epitaxial bilayer graphene on SiC(0001) and quasi-free-standing bilayer graphene on SiC(0001) is investigated. The dependences of the resistance and the polarity of the Hall resistance at zero gate voltage on the top-gate voltage show that the carrier types are electron and hole,...

متن کامل

High thermal stability quasi-free-standing bilayer graphene formed on 4H-SiC(0 0 0 1) via platinum intercalation

Influences on electronic structure induced by platinum (Pt) deposited on monolayer graphene grown on SiC(0001) are investigated by photoelectron spectroscopy (PES), selected area low energy electron diffraction (l-LEED) and angle resolved photoelectron spectroscopy (ARPES) techniques at the MAX Laboratory. Stable monolayer graphene electronic properties are observed after Pt deposition and afte...

متن کامل

Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation

Graphene, a monoatomic layer of graphite hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This article reviews the controlled growth of epita...

متن کامل

A Novel Method for Considering Interlayer Effects between Graphene Nanoribbons and Elastic Medium in Free Vibration Analysis

A complete investigation on the free vibration of bilayer graphene nanoribbons (BLGNRs) mod-eled as sandwich beams taking into account tensile-compressive and shear effects of van der Waals (vdWs) interactions between adjacent graphene nanoribbons (GNRs) as well as between GNRs and polymer matrix is performed in this research. In this modeling, nanoribbon layers play role of sandwich beam layer...

متن کامل

Changes in work function due to NO2 adsorption on monolayer and bilayer epitaxial graphene on SiC(0001)

The electronic properties of monolayer graphene grown epitaxially on SiC(0001) are known to be highly sensitive to the presence of NO2 molecules. The presence of small areas of bilayer graphene, on the other hand, considerably reduces the overall sensitivity of the surface. We investigate how NO2 molecules interact with monolayer and bilayer graphene, both free-standing and on a SiC(0001) subst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015